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Summary
Background Mutations in the Plasmodium falciparum dhfr gene confer resistance to pyrimethamine, which is widely
used for malaria chemoprevention in Africa. We aimed to evaluate the frequency and evolution of dhfr mutations in
Plasmodium ovale spp in Africa and their functional consequences, which are incompletely characterised.

Methods We analysed dhfr mutations and their frequencies in P ovale spp isolates collected between Feb 1, 2004, and
Aug 31, 2023, from the French National Malaria Reference Centre collection and from field studies in Benin, Gabon, and
Kenya. Genetic patterns of positive selection were investigated. Full-length recombinant wild-type and mutant DHFR
enzymes from both P ovale curtisi and P ovale wallikeri were expressed in bacteria to test whether the most common
mutations reduced pyrimethamine susceptibility.

Findings We included 518 P ovale spp samples (314 P ovale curtisi and 204 P ovale wallikeri). In P ovale curtisi,
Ala15Ser-Ser58Arg was the most common dhfr mutation (39%; 124 of 314 samples). In P ovale wallikeri, dhfr
mutations were less frequent, with Phe57Leu-Ser58Arg reaching 17% (34 of 204 samples). These two mutants
were the most prevalent in central and east Africa and were fixed in Kenyan isolates. We detected six and four
other non-synonymous mutations, representing 8% (24 isolates) and 2% (five isolates) of the P ovale curtisi and
P ovale wallikeri isolates, respectively. Whole-genome sequencing and microsatellite analyses revealed reduced
genetic diversity around the mutant pocdhfr and powdhfr genes. The mutant DHFR proteins showed structural
changes at the pyrimethamine binding site in-silico, confirmed by a 4-times increase in pyrimethamine
half-maximal inhibitory concentration in an Escherichia coli growth assay for the Phe57Leu-Ser58Arg mutant and
50-times increase for the Ala15Ser-Ser58Arg mutant, compared with the wild-type counterparts.

Interpretation The widespread use of sulfadoxine–pyrimethamine for malaria chemoprevention might have exerted
fortuitous selection pressure for dhfr mutations in P ovale spp. This calls for closer monitoring of dhfr and dhps
mutations in P ovale spp.
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(http://creativecommons.org/licenses/by-nc/4.0/).

Introduction
Malaria is a vector-borne parasitic disease causing approxi-
mately 249 million cases and 608 000 deaths worldwide in
2022, with about 95% of cases occurring in sub-Saharan
Africa.1 Plasmodium ovale spp, now referred to as P ovale
wallikeri andP ovale curtisi,2 account for up to 1⋅69%of cases
in sub-Saharan Africa and 0⋅77% worldwide.3 The preva-
lence of these overlooked species is likely to be under-
estimated due to low parasite densities and difficulties in
detection by microscopy and rapid diagnostic tests, as
recently demonstrated inTanzania.4 LikePlasmodiumvivax,
both P ovale curtisi5 and P ovale wallikeri6 have the ability to
cause relapses, characterised by recurrent asexual parasit-
aemia arising from dormant liver forms (hypnozoites) after
an initial infection. These dormant forms are refractory to

most antimalarials and can therefore limit the control of
those relapsing species.7

Introduced in many countries in the 1960s, sulfadoxine–
pyrimethamine was formally adopted as first-line treat-
ment for malaria in nine African countries in the 1990s8

(and as chemoprophylaxis for travellers in the 1980s9). Its
effectiveness was then compromised by the emergence and
spread of sulfadoxine–pyrimethamine-resistant Plasmo-
dium falciparum parasites.10 This led to its replacement by
artemisinin-based combination therapies or mefloquine as
first-line treatment in the 2000s. However, sulfadoxine–
pyrimethamine still forms the basis of preventive treat-
ment strategies in vulnerable populations. The use of
sulfadoxine–pyrimethamine for intermittent preventive
treatment in pregnancy (IPTp) significantly reduces low

LancetMicrobe2024

Published Online

https://doi.org/10.1016/

S2666-5247(24)00054-5

*Members of the Investigation

Study Group are listed in

appendix 1 (pp 39–43)

Université Paris Cité, IRD, MERIT,

Paris, France (V Joste PharmD,

J Bailly MSc,

F G Toko Tchokoteu BSc,

S Achache BSc, G Cottrell PhD,

Prof S Houzé PhD, J Clain PhD);

Centre National de Référence du

Paludisme, AP-HP, Hôpital

Bichat – Claude-Bernard, Paris,

France (V Joste,

Y Rakotoarivony BSc,

Prof S Houzé, J Clain); Université

de Rouen Normandie,

Laboratoire de Parasitologie-

Mycologie, UR 7510 ESCAPE,

Centre Hospitalier Universitaire

de Rouen, Rouen, France

(R Coppée PhD); Unité

Parasitologie et Entomologie,

Département Microbiologie et

Maladies Infectieuses, Institutde

Recherche Biomédicale des

Armées (IRBA), Marseille, France

(B Pradines PhD); Université

Aix-Marseille, IRD, SSA,

VITROME, Marseille, France

(B Pradines); IHU Méditerranée

Infection, Marseille, France

(B Pradines); Centre National de

Référence du Paludisme,

Marseille, France (B Pradines);

INSERM U1016, Institut Cochin,

Laboratoire de Parasitologie-

Mycologie, Hôpital Cochin,

AP-HP, Université Paris Cité,

Paris, France (Prof F Ariey PhD);

Malaria Research Unit, Institut

Pasteur du Cambodge, Phnom

Penh, Cambodia (N Khim PhD,

J Popovici PhD); Department of

Tropical Medicine and

Parasitology, Faculty of

Medicine, Juntendo University,

Tokyo, Japan (Prof T Mita PhD);

Department of Tropical

Medicine, Bernhard Nocht

Institute for Tropical Medicine,

Hamburg, Germany

Articles

www.thelancet.com/microbe Vol ▪ ▪ 2024 1

http://crossmark.crossref.org/dialog/?doi=10.1016/S2666-5247(24)00054-5&domain=pdf
https://doi.org/10.1016/S2666-5247(24)00054-5
https://doi.org/10.1016/S2666-5247(24)00054-5
www.thelancet.com/microbe


birth weight and neonatal mortality11 and has been recom-
mended by WHO since 1998. Remarkably, despite
widespread pyrimethamine and sulfadoxine resistance,
sulfadoxine–pyrimethamine remains of paramount clinical
interest, particularly for birthweight outcomes.12 In
addition, seasonal malaria chemoprevention (SMC), con-
sisting of a full course of sulfadoxine–pyrimethamine plus
amodiaquine givenmonthly to children aged 3–59months,
was recommendedbyWHOin2012.13 In 2021, 15 countries
in the Sahel region of Africa had active SMC programmes,
representing 180 million doses of treatment per year.14

InP falciparum, pyrimethamine resistance is conferred by
three main amino acid changes (Asn51Ile, Cys59Arg, and
Ser108Asn) in thedihydrofolate reductase enzyme (DHFR),
which are nowhighly prevalent in sub-SaharanAfrica,15 and
an additional fourth (Ile164Leu) that confers very high rates
of resistance. Due to the sustained and continuous use of
sulfadoxine–pyrimethamine over decades, non-falciparum
human malaria species have been exposed to pyrimeth-
amine selection. Remarkably, two recent studies have
reporteddistinct sets ofmutations in thepocdhfr and powdhfr
genes of African isolates,16,17 including mutations at
positions known to confer pyrimethamine resistance in
P falciparum and P vivax. However, the number of isolates

includedwas small (five P ovale curtisi and six P ovale wallikeri
isolates)17 or the dhfr coding sequence was not fully cov-
ered.16 Interestingly, some evidence of positive selection
on pocdhfr was also found.16 Altogether, these initial
results prompted us to evaluate more comprehensively
the molecular epidemiology of dhfr mutations in a larger
collection of P ovale spp isolates from varied African
endemic regions and to test their functional effect.
Here, we investigated the frequency of dhfrmutations in

P ovale curtisi and P ovale wallikeri isolates from 28 different
African countries collected between 2004 and 2023. We
searched for genetic evidence of positive selection on both
pocdhfr and powdhfr using flankingmicrosatellite and single
nucleotide polymorphism (SNP) markers. Finally, we used
in-silico homology modelling and a heterologous bacterial
expression system to assess whether the dominant muta-
tions in PocDHFR and PowDHFR alter pyrimethamine
susceptibility.

Methods
Sample and data collection
We retrospectively included a subset (see appendix 1 p 3
for more details on the selection) of P ovale curtisi and
P ovale wallikeri samples from the DNA bank of the French
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Research in context

Evidence before this study
The antimalarial combination sulfadoxine–pyrimethamine is widely
used in sub-Saharan Africa for intermittent preventive treatment in
pregnancy, in infants, and for seasonal malaria chemoprevention.
Over the past 30 years, Plasmodium falciparum has developed
resistance to these drugs due to point mutations in the
dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr)
genes, challenging the efficacy of sulfadoxine–pyrimethamine in
sub-Saharan Africa. In a recent report from 2022, non-synonymous
mutations in the dhfr gene of P ovale spp have been observed in sub-
SaharanAfrica. The frequency in a larger sample and the evolution of
these pocdhfr and powdhfrmutations in sub-Saharan Africa remain
to be fully elucidated, as does their functional effect.

We searched PubMed for articles published since database inception
until Dec 31, 2023, using the search terms “(Plasmodiumovale) AND
(dhfr OR powdhfr ORpocdhfr)”. Of seven studies, three reported dhfr
mutations in P ovale curtisi or P ovale wallikeri isolates from sub-
SaharanAfrica. In total, fewer than 100 isolates for these twomalaria
parasite species were screened for dhfrmutations, withmissing data
for many east African countries and incomplete dhfr coding
sequences for 147 isolates. Chen and colleagues reported in 2022
reduced genetic diversity around pocdhfr in 69 isolates, possibly
related to selective sweep, butpowdhfr remains tobe studied.Whole-
genome data for P ovale curtisi and P ovale wallikeri are also very
scarce, with approximately 20 genomes for either species available in
the European Nucleotide Archive and National Center for
Biotechnology Informationdatabases, limitingpopulationgenomics
studies. Finally, no clinical follow-up nor in-vitro experiments have

beenperformed to demonstrate that pocdhfr and powdhfrmutations
are associated with altered susceptibility to pyrimethamine. The
paucity of data prompted us to conduct this study.

Added value of this study
Weanalysed the spectrumand frequency of dhfrmutations. To our
knowledge, this is to date the largest study related to P ovale spp
genomics and pyrimethamine resistance. We evidenced a selective
sweep targeting both pocdhfr Ala15Ser-Ser58Arg and powdhfr
Phe57Leu-Ser58Arg and provided data that support the different
evolution of the two species at this locus associated with drug
resistance. In particular, we described at least two distinct
emergences for the Ala15Ser-Ser58Arg allele and only one
dominant haplotype for the Phe57Leu-Ser58Arg allele. In addition,
PocDHFR and PowDHFR in-silico modelling and half-maximal
inhibitory concentrationmeasurements both suggested a reduced
susceptibility to pyrimethamine associated with these two main
dhfr mutants.

Implications of all the available evidence
The overlooked P ovale curtisi and P ovale wallikeri species account
for a meaningful proportion of malaria infections, particularly in
east Africa (eg, up to 50% of malaria cases in Tanzania). The data
collected here suggest that P ovale curtisi and P ovale wallikeri
populations from central and east Africa are under antimalarial
drug selection pressure, presumably from sulfadoxine–
pyrimethamine. There is a need to monitor mutations in dhfr and
other drug resistance genes in these two malaria species and to
document the clinical impact of these mutations.

See Online for appendix 1
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National Malaria Reference Centre (FNMRC; responsible
for the epidemiological surveillance of imported malaria in
France) collected between Feb 1, 2004, and Aug 31, 2023.
Samples from three field studies, selected to improve
geographical coverage, in Gabon (non-randomised clinical
trial, CEI-CERMEL: 007/2014; samples collected from
Dec 1, 2014, to Aug 31, 2016), Kenya (prevalence survey,
WRAIR-A number 2454 and KMRI number 3628; samples
collected from Aug 1, 2010, to Aug 31, 2023), and Benin
(prevalence survey, number 23/CREC/CEI-CREC/SA;
samples collected in 2020) were also included. Sample data
and processing are described in detail in appendix 1 (p 3).
Informed consent was not required as the clinical and

biological data were collected from the FNMRC database in
accordance with the common public health mission of all
the National Reference Centres in France, in coordination
with the organisation Santé Publique France for malaria
surveillance and care. The study was considered as non-
interventional research according to article L1221–1.1 of
the Public Health Code in France and only required the
patient’s non-opposition (according to article L1211–2 of the
Public Health Code). All data were anonymised before use.
For the Benin isolates from the Etude des déterminants
individuels du paludisme asymptomatique dans la zone sani-
taire ALLADA-ZE-TOFFO (Study of individual determi-
nants of asymptomatic malaria in the ALLADA-ZE-TOFFO
health zone) ethical approval was obtained from the
Comité d’Ethique Institutionnelle (Institutional Ethics
Committee) of the Centre de Recherche Entomologique de
Cotonou (reference number: 23/CREC/CEI-CREC/SA).
For the Gabon field study isolates, ethical approval was
obtained from the Centre de Recherches Médicales de
Lambaréné (reference number: CEI-CERMEL: 007/2014).
Ethical approval for the Kenya field study isolates was
obtained from the Walter Reed Army Institute of Research
(number 2454) and the Kenya Medical Research Institute
(number 3628).

Procedures
Sanger sequencing of the pocdhfr and powdhfr coding
sequences
The complete coding sequences of pocdhfr and powdhfrwere
amplified by single round or semi-nested PCR. PCR reac-
tion mixtures, cycling conditions, and sequencing strategy
are described in appendix 1 (pp 4, 28).

PCR microsatellite analysis
We used previously published primers to amplify four
microsatellitesflanking the pocdhfr gene16 and developed six
microsatellites flanking the powdhfr gene (appendix 1 p 28).
The location, PCRmixes, cycling programmes, and analysis
are described in appendix 1 (pp 5, 28).

Whole-genome sequencing
Leukodepletion or selective whole-genome amplification
was used to obtain samples enriched for P ovale spp DNA
(appendix 1 p 6). P ovale sppDNA-enriched samples were

then used for library preparation and sequenced at
150 bp paired-end on a NextSeq 500 system (Illumina,
San Diego, CA, USA). The full procedure is described in
appendix 1 (p 7).

Variant calling and analysis
Raw reads were aligned to the reference genomes
(PocGH01 or PowCR01) using the Burrows-Wheeler
Aligner algorithm (version 0.7.17; default parameters).
Aligned reads were processed using SAMtools (version 1.4)
and coverage statistics and depth estimates were obtained
using Qualimap (version 2.2.1). Duplicate reads were
removed using Picard MarkDuplicates (version 2.26.10).
Genome-wideSNPswere identifiedusingBCFtoolsmpileup
(version 1.13) according to previously published quality
criteria.17 The full analysis procedure is described in
appendix 1 (pp 8–9).

Analysis of the predicted PocDHFR and PowDHFR tertiary
structures
The tertiary structures of wild-type PocDHFR and
PowDHFR were predicted by homology modelling using
the wild-type PfDHFR structure obtained by x-ray
diffraction at a resolution of 2⋅6 Ångstrom (Protein Data
Bank ID: 3UM8) as a template.18Mutationswere introduced
using the swapaa function inUCSFChimera (version 1.14).
Themodels were aligned with PfDHFR co-crystallised with
pyrimethamine to identify the pocketwhere the drug should
dock to PocDHFR and PowDHFR. The procedure is fully
described in appendix 1 (p 10). Molecular drawings were
generated using UCSF Chimera.19

Expression of PocDHFR and PowDHFR in bacterial system and
drug assays
The protocol for expression of the wild-type and mutant
versions of both PocDHFR and PowDHFR domains,
preparation of the bacterial suspension for the drug assay,
and drug assays were similar to the overall strategy
described by Chusacultanachai and colleagues20 but with
several modifications. The full procedure is detailed in
appendix 1 (p 11).

Statistical analysis
All statistical analyses and graphs were performed using
R software (version 4.2.1). Quantitative results were
expressed as median (IQR). The Mann-Whitney U test was
used to test whether the distribution of ranks for one vari-
able was significantly different between the two groups.
Proportionswere comparedbyusing theχ2 or Fisher’s exact
test, depending on the sample size. A threshold of 0⋅05 was
chosen for significant results.

Role of the funding source
The funders of the study had no role in study design, data
collection, data analysis, data interpretation, orwritingof the
report.
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Results
A total of 518 Plasmodium ovale spp samples (314 P ovale
curtisi and 204 P ovale wallikeri) collected between Feb 1,
2004, and Aug 31, 2023, were retrospectively selected from
the FNMRC DNA bank (n=465) and field studies in Benin
(n=4),Gabon (n=13), andKenya (n=36; appendix 2). Isolates
were predominantly from central Africa (n=280), west
Africa (n=186), and east Africa (n=49). The three remaining
isolates were from Thailand (n=1) or an unknown country
(n=2).
The complete dhfr coding sequence of all isolates was

analysed by the Sanger method. 312 P ovale curtisi isolates
had the His98Pro amino acid change compared with the
PocGH01 reference strain and Pro98 was found in all 204
P ovale wallikeri isolates. We therefore considered Pro98 to
bewild type in both species. The pocdhfrAla15Ser-Ser58Arg
doublemutationwas foundwith a frequency of 39% (n=124
of 312; appendix 1 p 29). We identified six other pocdhfr
mutant haplotypes at much lower frequencies: Lys48Arg
(3%, n=9), Ala15Ser-Ser113Thr (3%, n=8), Ala15Ser-
Ser58Arg-Ser113Thr (1%, n=3), Pro98His (1%, n=2),
Ser113Thr-Ile169Thr (0%, n=1), and Ala97Ser (0%, n=1;
table, appendix 1 p 29). The mutants were predominantly
found in central and east Africa (table, figure 1), with Kenya
(100%, n=22 of 22), Cameroon (83%, n=75 of 90), and the
Central African Republic (68%, n=21 of 31) having the
highest proportions of mutants (appendix 1 p 29). The
frequency of the Ala15Ser-Ser58Arg mutation increased in
Cameroon between 2004–07 and 2008–23 (p<0⋅0001;
Fisher’s exact test; note, however, the lownumber of isolates
available [n=9] before 2008; appendix 1 p 12) and in central
Africa between 2012–15 and 2020–23 (p=0⋅011; χ2 test;
appendix 1 p 12).

In P ovale wallikeri, five powdhfrmutant haplotypes were
identified: Phe57Leu-Ser58Arg (17%, n=34 of 204),
Thr62Arg-Ser113Asn (1%, n=2), Cys49Arg-Thr62Arg-
Ser113Asn (0%, n=1), Asn105Ile (0%, n=1), and Ile169-
Leu (0%, n=1; appendix 1 p 30). All the mutant isolates
(n=39) were exclusively from central and east Africa
(table,figure 1). 20 (21%) of 97 isolates from central Africa
and 19 (86%) of 22 isolates from east Africa carried a
mutant powdhfr gene (table). Kenya, the Democratic
Republic of the Congo, and the Republic of the Congo had
the highest proportions of mutant powdhfr, with 100%
(n=16 of 16), 67% (n=4 of 6), and 41% (n=7 of 17),
respectively (appendix 1 p 30).
We tested for selective sweep(s) associated with the most

common dhfr mutant haplotypes—ie, pocdhfr Ala15Ser-
Ser58Arg and powdhfr Phe57Leu-Ser58Arg. To this end, we
performed whole-genome sequencing for 65 P ovale curtisi
and 28 P ovale wallikeri isolates from 24 different African
countries (whole-genome sequencing metrics detailed in
appendix 1pp31–33). TwoPovale curtisi isolateshadawithin-
infection fixation index (FWS) value below 0⋅95 (isolate
OC150: FWS=0⋅91; isolate OC156: FWS=0⋅92) and were con-
sidered polyclonal. Using single nucleotide polymorphisms
located in the 100 kb pocdhfr-flanking regions, a discriminant
analysis of principal components (DAPC) showed that the
P ovale curtisi Ala15Ser-Ser58Arg and wild-type isolates
grouped separately (appendix 1 p 13). Examination of the ten
discriminant positions identified by DAPC (appendix 1 p 14)
showed that 22 of the 28 isolates carrying Ala15Ser-Ser58Arg
(all from central Africa) were associated with two main,
related discriminant haplotypes (I-A and I-B; figure 2A) that
differed at the two discriminant SNPs located upstream of
pocdhfr. Six other P ovale curtisi Ala15Ser-Ser58Arg isolates
were associatedwithdiscriminanthaplotypes thatwere either
different or possibly related to I-A (OC230) or I-B. The
extended haplotype homozygosity (EHH) test and furcation
plot, performed on a subset of 37 isolates (22 and 15 isolates
carrying pocdhfr wild-type and Ala15Ser-Ser58Arg, respect-
ively), confirmed reduced genetic diversity around the
mutant pocdhfr Ala15Ser-Ser58Arg compared with the wild
type, suggesting positive selection (figure 2B, appendix 1
p 15). A genome-wide association study between Ala15Ser-
Ser58Arg and wild-type isolates revealed that the SNPs
most associated with the double mutants were located near
pocdhfr, suggesting a hitchhiking effect (appendix 1 p 16).
12 of the top 25 associated SNPs were located outside
chromosome 5 (where pocdhfr is located) and were mainly
involved inproteinbiosynthesis and transcription (appendix1
p 34). The P ovale curtisi Ala15Ser-Ser58Arg isolates carrying
haplotypes I-A or I-B did not cluster together in the phylo-
genetic tree based on genome-wide SNPs (appendix 1 p 17),
indicating that these two major mutant haplotypes were
segregating in different genomic backgrounds.
The four P ovale wallikeri isolates carrying powdhfr

Phe57Leu-Ser58Arg shared a common haplotype defined
by six SNPs in a short region between –3⋅3 and +11⋅9 kb
around powdhfr. This haplotype was not found in any of the

West Africa Central Africa East Africa All isolates

P ovale curtisi dhfr haplotype

Total 101 183 27 314*†‡

Wild type 94 (93%) 70 (38%) 1 (4%) 166 (53%)*

Ala15Ser-Ser58Arg 2 (2%) 96 (52%) 25 (93%) 124 (39%)†

Ala15Ser-Ser113Thr 0 8 (4%) 0 8 (3%)

Ala15Ser-Ser58Arg-Ser113Thr 0 2 (1%) 1 (4%) 3 (1%)

Ser113Thr-Ile169Thr 0 1 (1%) 0 1 (0%)

Lys48Arg 3 (3%) 5 (3%) 0 9 (3%)‡

Ala97Ser 0 1 (1%) 0 1 (0%)

Pro98His 2 (2%) 0 0 2 (1%)

P ovale wallikeri dhfr haplotype

Total 85 97 22 204

Wild type 85 (100%) 77 (79%) 3 (14%) 165 (81%)

Phe57Leu-Ser58Arg 0 15 (15%) 19 (86%) 34 (17%)

Asn105Ile 0 1 (1%) 0 1 (0%)

Thr62Arg-Ser113Asn 0 2 (2%) 0 2 (1%)

Cys49Arg-The62Arg-Ser113Asn 0 1 (1%) 0 1 (0%)

Ile169Leu 0 1 (1%) 0 1 (0%)

Data are N or n (%). We used the definition from the UN for the African regions. *One isolate (OC30) originates from
Thailand. †One isolate (OC139) has an unknown country of origin. ‡One isolate (OC37) has an unknown country of origin.

Table: Frequency of dhfrmutations in Plasmodium ovale spp isolates

See Online for appendix 2
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24 wild-type isolates (figure 2C). Interestingly, in the
phylogenetic tree based on genome-wide SNPs, isolates
carryingwild-type powdhfr fromwest Africa (exceptOW110)
grouped together (appendix 1 p17).
To explore the genetic diversity of dhfrhaplotypes in a larger

number of isolates, we genotyped 232 P ovale curtisi isolates
with four microsatellites flanking pocdhfr16 and 101 P ovale
wallikeri isolates with six novel microsatellites flanking
powdhfr (appendix 1 pp 35–36). Whether the analysis was
restricted to a country or a larger region, the expected het-
erozygosity (HE) was lower in the Ala15Ser-Ser58Arg than in
wild-type P ovale curtisi isolates (figure 3A, appendix 1
pp 18, 37). The majority of Ala15Ser-Ser58Arg mutants
from central Africa shared the same flanking haplotype M1
(273-101-418-131 bp) or its related haplotype M7 (268-101-
418-131 bp; figure 3B, appendix 1 p 19) corresponding to the
SNP-based discriminant haplotypes I-A and I-B, respectively.
The downstream-haplotype 101-418-131 bp (ie, the one
sharedby theM1andM7relatedhaplotypes) contributed to at
least 46%of theAla15Ser-Ser58Argmutants in central Africa
across all study periods (appendix 1 p 21). Remarkably, the
majority of isolates from east Africa shared another different
haplotype, M30 (268-91-426-123 bp) or its related haplotypes
M31 to M36, suggesting at least one additional origin of
the Ala15Ser-Ser58Arg mutation (figure 3B). Of the two
Ala15Ser-Ser58Arg-Ser113Thr triple-mutants from Camer-
oon, one clusteredwith I-A and the otherwith I-B, suggesting
that the two main Ala15Ser-Ser58Arg mutants are their
direct ancestors. In P ovale wallikeri, HE decreased near
powdhfr for Phe57Leu-Ser58Arg isolates at microsatellites

located from –4⋅8 to +17⋅6 kb of powdhfr comparedwith wild-
type isolates (figure 3C, appendix 1 pp 18, 37), confirming a
selective sweep involving the powdhfr Phe57Leu-Ser58Arg
mutation. Most powdhfr Phe57Leu-Ser58Arg isolates (ori-
ginating only fromcentral and east Africa) clustered together,
suggesting a common origin of the mutation (figure 3D,
appendix 1 p 22). Based on the decreasing east-to-central
frequency gradient, this haplotype might have originated in
east Africa and then spread to central Africa.
We then used homology modelling to generate in-silico

DHFR structures for P ovale curtisi and P ovale wallikeri
using the P falciparum DHFR structure as a template
(appendix 1 pp 23–24). Except for the rare Ala97Ser and
Pro98His mutations in PocDHFR, all the other natural
PocDHFR and PowDHFR mutations detected in this
study were located near or in the pocket where pyri-
methamine was docked (appendix 1 p 25). The Lys48Arg,
Cys49Arg, Ser58Arg, and Thr62Arg mutations probably
reduced the size of the channel at the entrance of the
binding pocket, whereas the Ala15Ser, Phe57Leu,
Asn105Ile, Ser113Thr/Asn, and Ile169Thr/Leu muta-
tions either reduced the pocket volume or changed its
architecture (appendix 1 p 25). Therefore, these muta-
tions might alter the interaction between pyrimethamine
and the PocDHFR or PowDHFR enzymes and reduce
susceptibility to the drug.
To experimentally test this hypothesis for the dominant

PocDHFR Ala15Ser-Ser58Arg and PowDHFR Phe57Leu-
Ser58Arg mutations, we measured the in-vitro growth in
the presence of pyrimethamine of Escherichia coli bacteria
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expressing either the wild type or the double-mutant
malarial DHFRs and in which the bacterial DHFR was
chemically inactivated. The half-maximal inhibitory con-
centration (IC50)—ie, the concentration of pyrimethamine

that inhibited 50%ofE coligrowth—was50-timeshigher for
the Ala15Ser-Ser58Arg than for the wild-type PocDHFR
(median 211 μM [IQR 191–213] vs 4⋅2 μM [4⋅0–8⋅2]; n=5
replicates; p=0⋅0079, Mann-Whitney U test; figure 4,
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appendix 1 p 26) and 4-times higher for the Phe57Leu-
Ser58Arg than for the wild-type PowDHFR (11⋅0 μM
[8⋅3–16⋅8] vs 2⋅9 [2⋅3–4⋅7]; n=5 replicates; p=0⋅012, Mann-
Whitney U test; figure 4, appendix 1 p 26). These results
suggest that pyrimethamine inhibited the double-mutant
DHFRs less efficiently than the wild-type counterparts.
Finally, since pyrimethamine is always partnered with

sulfadoxine as an antimalarial, we also investigated from
the whole-genome sequencing data the sequences of
pocdhps and powdhps, which are orthologous to known
molecularmarkers associatedwith sulfadoxine resistance in
P falciparum. None of the 11 mutations we detected corre-
sponded to those associated with sulfadoxine resistance in
P falciparum and P vivax (appendix 1 p 38), and they were all
located quite far from the sulfadoxine binding site and
mostly in long loops from the PocDHPS or PowDHPS
enzymes (appendix 1 p 27).

Discussion
Using the complete dhfr coding sequence from 518 isolates
of P ovale curtisi and P ovale wallikeri, we mapped the fre-
quency of dhfr mutations in west and central Africa and
partially in east Africa. The two sets of pocdhfr and powdhfr
mutations—some of which were previously described at a
similar prevalence in the retrospective study by Chen and
colleagues16—are species-specific, showing that the two
specieshave evolveddifferently at this drug resistance locus.
Most of the mutations we detected are located at homolo-
gouspositions inP falciparum21 andPvivax22,23dhfrknown to
confer pyrimethamine resistance.
We provide several lines of evidence that the pocdhfr and

powdhfr genes are under positive selection in central and
east Africa: (1) the frequency ofmutants is high, particularly
for pocdhfr Ala15Ser-Ser58Arg, whose frequency is fixed in
the small sample set from Kenya and has increased over
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time in central Africa during a period of sustained
sulfadoxine–pyrimethamine use; (2) the genetic diversity
flanking pocdhfr Ala15Ser-Ser58Arg and that flanking
powdhfrPhe57Leu-Ser58Arg are reduced in both central and
east African isolates, suggesting a selective sweep as previ-
ously described for pocdhfr in central Africa;16 (3) the two
triple-mutants pocdhfr Ala15Ser-Ser58Arg-Ser113Thr from
Cameroon had flanking dhfr haplotypes closely related to
that of the Ala15Ser-Ser58Arg double-mutant, suggesting
that the double mutant later acquired the Ser113Thr
mutation; we speculate thatP ovale curtisimight accumulate
dhfrmutations that confer a selective advantage, as observed
in P falciparum and P vivax;21,22,24 (4) the pyrimethamine
binding site is predicted to be altered in PocDHFR
Ala15Ser-Ser58Arg and PowDHFR Phe57Leu-Ser58Arg
structures generated in-silico; and (5) bacteria expressing
the double-mutant PocDHFR or PowDHFR malarial
enzymes grow significantly better in the presence of pyri-
methamine than those expressing the wild-type malarial
enzymes, a phenotypic change that is particularly large
for the PocDHFR Ala15Ser-Ser58Arg. For PowDHFR
Phe57Leu-Ser58Arg, the increase in IC50 was quite similar
to that previously measured for the same P vivax DHFR
double-mutant expressed in a Saccharomyces cerevisiae

model (7-times increase).22 Regarding the pocdhfrAla15Ser-
Ser58Arg, we do not have a reference IC50 value: the pfdhfr
Ala16Val-Cys59Arg mutation (at positions similar to
Ala15Ser-Ser58Arg) was a non-functional allele in the yeast
model and has not been studied in any other Plasmodium
species nor using purified enzymes.
Notably, none of the single mutants Ala15Ser, Phe57Leu,

and Ser58Arg were detected in our African samples.
Chenandcolleaguesdescribed theSer58Argmutationalone,
but their forward PCR primer did not cover the Ala15Ser
mutation.16 Therefore, it is currently uncertain whether
the dominant pocdhfr Ala15Ser-Ser58Arg and powdhfr
Phe57Leu-Ser58Arg haplotypes are of African origin or have
been imported to the continent by migration. The source
could be the southeast Asian region where the two species
have been reported,2 similarly to the introduction of pfdhfr
Asn51Ile-Cys59Arg-Ser108Asn into sub-Saharan Africa.25

However, there are several arguments in favour of an
African origin: firstly, P ovale spp have a low prevalence in
southeast Asia and the western Pacific region;3 secondly, at
least two independent origins of the pocdhfr Ala15Ser-
Ser58Arg mutation are evidenced in isolates from central
and east Africa; and thirdly, local African emergence of
single and double dhfr mutants has also been reported in
P falciparum.26

It is interesting to note that pocdhfr and powdhfr mutants
were rare in thewestAfrican isolates studiedhere.Chen and
colleagues found in this same region a comparatively higher
(but still quite low) frequency of mutants,16 suggesting that
there could be geographical heterogeneity in the region.
The low mutant frequencies in west Africa could be
explained by the fact that P ovale spp parasites have fewer
migratory events within the sub-Saharan Africa region than
P falciparum, perhaps because P ovale spp infections are
much less frequent. The rate of spread also depends largely
on the intensity of drug use and of the selective advantage
conferred by pocdhfr and powdhfrmutations. The sustained
use of sulfadoxine–pyrimethamine is very likely to continue
and one hypothesis could therefore be that the level of
pyrimethamine resistance conferred by some of the P ovale
spp dhfr mutants might be moderate, potentially slowing
their spread. The absence of seemingly relevant partner
mutations in pocdhps and powdhps—suggesting only partial
clinical resistance to sulfadoxine–pyrimethamine—and the
relatively small size of the genomic regions affected by the
dhfr-related genetic hitchhiking (at least for P ovale wallikeri,
synonymous with low strength of selection27) in our
sampling support this hypothesis.
Finally, using genome-wide data for P ovale curtisi and

Povalewallikeri,weprovide afirst insight into thepopulation
genomic structure of these two species. We highlighted the
segregation of P ovale wallikeri genomes according to their
region of origin, suggesting genetic differentiation between
west Africa and central or east Africa. Regarding P ovale
curtisi, despite the high rate of monoclonal infections and
low parasite prevalence thatwould both favour inbreeding,28

the segregation of the dominant pocdhfrAla15Ser-Ser58Arg
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haplotypes (I-A and I-B) in multiple P ovale curtisi genome-
wide backgrounds suggests the existence of sexual
recombination in P ovale curtisi. Further studies with larger
datasets and more sophisticated analyses are needed to
confirm these initial findings.
This study has several limitations. Firstly, we did not

include isolates from several countries in sub-Saharan
Africa (especially east and southern Africa) or Asia.
Secondly, the E colimodel we used is not sufficient to prove
the resistance to pyrimethamine in the parasite. An orthol-
ogous exchange strategy inP falciparumorPknowlesi29 as the
recipient parasite could be used to confirm the E coli find-
ings. Finally, the clinical impact of the mutations on the
efficacy of pyrimethamine-containing treatments to prevent
or cure P ovale curtisi and P ovale wallikeri infections was not
assessed.
In conclusion, we report here a moderate to high preva-

lence of dhfrmutations in P ovale curtisi and P ovale wallikeri
in some areas of central and east Africa. Selective sweeps
targeting the pocdhfr Ala15Ser-Ser58Arg and powdhfr
Phe57Leu-Ser58Arg alleles were evidenced, probably
caused by the sustained selective pressure of pyrimeth-
amine (a hypothesis previously proposed by Chen and
colleagues16), which has been part of multiple curative and
preventive strategies for decades: first as sulfadoxine–
pyrimethamine curative therapy, and then as chemo-
preventive therapywith the deployment of IPTp, intermittent
preventive treatment in infants, and SMC. Based on the
experiencewithP falciparum, the role of dhfrmutations has
become critically important, as pfdhfrmutations have been
described as a precursor to the acquisition of pfdhps
mutations24 and the combination of pfdhfr and pfdhps
mutations has led to a reduction in the efficacy of IPTp in
certain regions of sub-SaharanAfrica.30 This calls for closer
monitoring of dhfr and dhpsmutations inP ovale curtisi and
P ovale wallikeri, as well as other candidate drug resistance
markers.
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